If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18j^2+96j+78=0
a = 18; b = 96; c = +78;
Δ = b2-4ac
Δ = 962-4·18·78
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-60}{2*18}=\frac{-156}{36} =-4+1/3 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+60}{2*18}=\frac{-36}{36} =-1 $
| 10a-100a+20=100a | | (5y+2)^2=0 | | n^2+3n-88=0 | | 14b+6b=-12 | | 5/8=4y0 | | 5+19*x=43 | | 5/n+6=10/n | | 30x=-2-100x^2 | | 4-7x=x+14 | | 12+z=17=22 | | (8+x)+405=21+8 | | 19x^2=-13x | | -9.3=x-3.4 | | 150m-100m=39,000=41,000-150m | | 4-7x=14+x | | 13=-3x+4x+10 | | f=-15 | | 6+(2*x)=20 | | r-19.7=-3.8 | | 7+x/(-2)=6 | | 23=8f | | 8f=-23 | | 2x2=22=4 | | y/30=-25 | | 2/3x=82.5 | | 5a^+6a-27=0 | | 5x+9=2x=3 | | 7x+1+19x-18+10x-9=180 | | -5(-8x-3)=-19 | | 4(-3x-1)=-10 | | 6x^2-12-4x=19x+32 | | 9*m+12=5*9 |